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Overview

oPresentation of CEA
oWhy CEA is doing Parallel Computing
oThe various options
oRecommendations
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Defense

Energy

Technologies for information and health

Atom from research to industry

The French Atomic Energy 
Commission
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TERA/CCRT : Applications and Evolution

1996
2001

2005

2003

Astrophysics

Biology

Nuclear Energy

Deterrence Security

Climate

Aeronautics

TERA-10
60 Tflops

TERA-1
5 Tflops

CCRT
2 Tflops

2007

CCRT-B
52Tflops

CRAY T90
43 Gflops

2010 TERA-100 : ~1Pflops
2009 CCRT-B : +103+192 Tflops
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The new CCRT cluster
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Sous-système de 
calcul

Interconnect Infiniband DDR

Sous-système I/O et 
d’administration (haute 
disponibilité)

Sous-système Lustre 

(20 Go/s en lecture/écriture)

B
ac

kb
on

e
1068 nodes

2 Intel 
Nehalem-EP 

8 cores, 24GB

103TFlops

48 NVIDIA 
Tesla
192TFlops SP
(attached to 
96 nodes)
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Future machines

o
 

We have to design the next generation of production machines
� For Research and Technology (CCRT)
� For Defense programs (TERA)

If If petaflopspetaflops
 

machines will be available soon machines will be available soon 
(2010),(2010),

Exascale Computing is the next focusExascale Computing is the next focus

o
 

We are limited by power resources
� Is 100+ MW reasonable ?

o
 

There’s no foreseen breakthrough in processor technology
� Our goal is to provide General Purpose machines

o
 

How to program those machines?
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CEA Context: codes

oTypes of codes
� Research for physics

•
 

Special purpose, advanced methods 

� R&D for production
•

 
Highly coupled physics models 

•
 

Finite elements
•

 
Structured and un structured meshes, AMR, PIC, …

•
 

Has to be validated to guarantee our designs

o50+% F90, remainder is C/C++

oRuns are large
� 106 – 109 cells
� Produce > 20TB / day
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Example: Molecular Dynamics ©
 

CEA/DAM

o
 

7 millions molecules, 300000 time steps (75ns)
o

 
1000 processors, 100h, Code STAMP

o
 

Credit: Laurent Soulard

o
 

Explosion front in a explosive
o

 
Grand Challenge on TERA 10
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Example: Life science ©
 

CEA/DSV

o
 

A few 1011

 

positons
 

to simulate
o

 
Code OpenGATE

o
 

2.5h, 7000 processors
o

 
Credit: S. Jan

o
 

TEP simulation
o

 
Grand Challenge on TERA 10

o
 

Visualization: 8 cores, 4h
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Example: Risk prevention ©
 

CEA/DAM

o
 

11 km x 11 km x 2 km, 500 processors, 40h
o

 
Code MKa3D

o
 

Credit: C. Mariotti

o
 

5.5 magnitude  seism simulation
o

 
Visualization: 16 CPU, 500h
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Example: astrophysics
 

©
 

CEA/IRFU

o
 

70 billion particles, 140 billion cells
o

 
6144 processors, 18TB RAM, 2 months,

o
 

Code RAMSES
o

 
Credit: Romain

 
Teyssier

 
et al.

o
 

Formation of structures in the 
universe.
o

 
Grand Challenge on CCRT
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Parallelism is required

o
 

Every new application MUST be parallel
� Problem setup, simulation, post-processing

o
 

What are the options?
� Multicore

•

 

OpenMP
•

 

pthreads
� Cluster

•

 

MPI
� GPU (manycore)

o
 

What level of parallelism?
� Depends on the granularity possible

•

 

Embarrassingly parallel problems 
•

 

Domain decomposition
–

 

Ghost cells 
•

 

Loop level

o
 

You have to verify parallelism
� Results must be exactly the same in parallel or in sequential

•

 

Beware of random generators (Monte Carlo)
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Do not forget Amdahl’s law

n=∞
f=0.00 s=1
f=0.10 s=1.1
f=0.20 s=1.25
f=0.30 s=1.42
f=0.40 s=1.66
f=0.50 s=2
f=0.60 s=2.5
f=0.70 s=3.33
f=0.80 s=5
f=0.90 s=10
f=0.95 s=20
f=0.99 s=100
f=0.999 

s=1000
Think

 
massively

 
parallel!
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Hardware Architecture: a processor

oMemory is banked
� Reuse old practices 

from CRAY vector 
machines

QPI
to CPU 
or I/O

4 SMI 
memory 
channel

Last Level Cache
24MB

C
or

e-
1

Core/System Interface

Router Mem
Cntrl

Mem
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C
or

e-
2

C
or

e-
3

C
or

e-
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C
or

e-
5

C
or

e-
6

C
or

e-
7

C
or

e-
8

Nehalem-EX



15CEA, DAM, DIF, F-91297, Arpajon, France

Hardware Architecture: a node with 4 sockets

oAll RAM positions are
� Available to each 

processor
� not equal in access time

•
 

Lock process to CPU
•

 
Lock allocated memory 
to a CPU

IOHIOH

Neh.-EXNeh.-EX

Neh.-EXNeh.-EX

QPI
RAMRAM

RAMRAM

RAMRAM

RAMRAM
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Multicore (N < 32)

o
 

Multithread and OpenMP 
� two different ways to exploit multicore on the node

o
 

Multithread
� Well suited for graphic user interfaces
� Many implementations

•

 

Pthreads is the most widely used
•

 

Intel TBB –

 

for C++ codes
� Hard to program

o
 

OpenMP
� Easy to learn
� Well adapted to loop level parallelism
� #pragma (ftn) or !$ (c) => leaves the code unchanged

o
 

MPI 
� Works also;

o
 

Impact on libraries
•

 

Should be threads safe + re-entrant
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http://www.sandia.gov/news/resources/releases/2009/multicore.html
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Hardware Architecture: clustering nodes

network

Fat tree

4D
hypercube
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Cluster

oMPI (Message Passing Interface): the most widely 
used library on clusters

� Many implementations optimized for the hardware
� Easy to program
� Scalable (should still work for exascale computers)
� Can be adapted to the network topology

oRequires a careful study of communication patterns
� The memory structure of the code must be well understood
� Communications can take most of the time

oMaster / slave structures don’t scale
oImpact on libraries

� None
� If the library uses MPI: should have its own communicator
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OpenMP + MPI    or    OpenMP / MPI

o
 

OpenMP and MPI can coexist peacefully 
� May require some tuning : cpuset / memset
� Put MPI in a single OpenMP thread

o
 

What to choose ?
� If MPI on a node is efficient then MPI only
� It all depends on the largest problem size which will be computed
� Study the memory layout of the application

o
 

MPI
� Good for problems which can be divided by blocks
� Very intrusive work, no automatic process
� Excellent for embarrassingly parallel jobs

o
 

OpenMP
� If needs a lot of memory but hard to parallelize then OpenMP on fat 

nodes
� Loop oriented

•

 

Scalable up to the number of nodes (at most if it goes well)
� Minimal work and code almost unchanged

•

 

If the original code was properly developed
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Parallelism: an active field of research

oAlgorithms
oProcessor architecture

� Intel Larrabee, AMD Fusion

oLanguages: Partitioned Global Adress
 

Space
� UPC, Co-array Fortran, Fortress, Chapel, X10
� Interesting notions, still under development

•
 

Far from being productions tools
•

 
May need some extensive rewrite

–
 

What should be done with million of lines of legacy 
codes ?
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In our production 

� MPI mostly
•

 
Took time to do the migration

� OpenMP not performing as well as expected
•

 
Position should be revised with Intel’s Nehalem

� Very few multithreaded codes
•

 
Active field of investigation though 
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Manycore (N>32)

o
 

As of 2009, we think that the future architectures will 
be accelerated

� Good ratio power / performance
� Good ratio density / performance

oGPU Computing is our current compromise/answer
� In terms of performances and power
� We wait for the market to get clearer (Larrabee ?)

oConstraints of this type of hardware as of today
� No ECC
� Debugging tools
� A choice of non standard languages
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Available configurations at CEA

o
 

Various test machines
� As close to the user’s network as possible
� Each test machine

•

 

2 Bull servers –

 

2 Haperton, 8GB 
•

 

2 NVIDIA Tesla S1070NVIDIA Tesla S1070
•

 

IB DDR

o
 

CCRT Graphic cluster
� 40 Quadro FX 5800 (8 cores Haperton, 64GB/128GB)

•

 

T10 based : will be used for GPGPU too.

o
 

A new CCRT machine
� Two partitions in 1068 nodes

•

 

Standard production : 972 nodes for 103TFlops
•

 

Hybrid partition : 96 servers + 48 NVIDIA Tesla48 NVIDIA Tesla for GPU Computing 
192 192 TFlopsTFlops

� Servers = BULL Novascale R42x
•

 

Intel NehalemNehalem--EPEP, 8GB, IB DDR

T10 credit NVIDIA

Tesla S1070 credit NVIDIA
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Hardware Architecture: node integration of a GPU

IOHIOH

Neh.-EXNeh.-EX

Neh.-EXNeh.-EX

PCI-Ex 16X gen2



26CEA, DAM, DIF, F-91297, Arpajon, France

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

o
 

240 thread processors
o

 
Full scalar processor with 
integer and floating point 
units

o
 

IEEE 754 floating point
� Single and Double

Thread Processor 
(TP)

FP Integer

Multi-banked 
Register File

SpcOps
ALUs

Thread Processor Array 
(TPA)

30 TPAs = 240 Processors
Double Precision

Special Function Unit (SFU)

TP Array Shared Memory
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Programming languages for GPUs
 

(1/2)

oCuda
� For prototyping or “Kleenex” codes
� For highly tuned libraries (if needed)
� Status of FORTRAN ?

oOpenCL
� The great unknown – for the portability 
� Should be tested on AMD/ATI cards at some points too
� NO FORTRAN 

oRapidmind
� Has to be experimented
� NO FORTRAN
� Seen as very intrusive
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Programming languages for GPUs
 

(2/2)

oHMPP
� Our KEY solution for LEGACY codes

•
 

Ease of use for the FORTRAN community
•

 
Capitalize on our MILLIONS of line of code

� Main advantages for CEA
•

 
FORTRAN, C

–
 

Java, C++ support soon
•

 
Multiple targets (NVIDIA, ATI, SSE, …)

•
 

Keeps the codes’
 

portability
•

 
Low learning curve

oFirst actions : Create a user base
� Important to ease the change of paradigm

•
 

Parallelism is NOT a widespread knowledge
–

 
Massive parallelism is for some experts only

•
 

Spread the knowledge from within the teams
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GPU: First results

oLibraries call (0D) can yield significant results
� EOS on GPU => 3 fold speed up for the whole run

oCode architecture might not be suitable for GPU usage as isas is
� First make sure that the code is REALLY optimized
� Then make sure that the parallelization is well done

•
 

Reuse some of the vector programming habits
•

 
Reuse the study of the memory 

–
 

Memory is far far
 

away !
� Then locate what can remain on the GPU as long as possible
� Then rewrite some portions of the code

•
 

outvec[i] = outvec[i] + matvals[j] * invec[indx[jindx[j]]]
– Indirect addressing + reduction
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Everything together ?

o
 

Adding Cuda
 

to OpenMP + MPI is possible
� One MPI task per node
� One OpenMP thread per core
� One thread specialized for Cuda

o
 

HMPP allows for a mix of GPU Computing along 
with MPI

� Hybrid programming is here
o

 
Big increase in code complexity
� importance of code architecture

� KISS 

o
 

Keep the code readable and easy to maintain
o

 
Optimize the algorithm is more efficient than 

modify the existing unoptimized
 

code
� Teams of experts : computer scientist + physicist 

+ mathematician



31CEA, DAM, DIF, F-91297, Arpajon, France

Don’t forget algorithms ;-) 

From SIAM Review, 2001

"Is There A 
Moore’s Law For 
Algorithms?"
David E. Womble
Sandia National 
Laboratories
Presented at 
Salishan
April 19, 2004
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Other parallelism having an impact on applications 

oI/O
� MPI-I/O versus home made
� Lustre

•
 

File system level 
–

 
Hopefully transparent for the user

oVisualization
� Tools must handle parallel outputs of codes
� Recent tools use parallelism

•
 

MPI and multithread
� Can use multiple displays or graphic cards 

•
 

For performances
•

 
For higher resolution



33CEA, DAM, DIF, F-91297, Arpajon, France

Other issues with parallelism: debugging

o
 

Multicore
� Tools exist, a GUI helps a lot

•

 

Gdb, DDT, Totalview, …

o
 

Clusters
� MPI integration usually good

•

 

DDT, Totalview
� Usability iffy with hundreds to thousands of tasks

o
 

Manycore
� NVIDIA just provided gdb for its hardware
� Allinea and Totalview are working on providing at least basic 

features.

o
 

General issue
� How to reproduce unpredictable sequences/events
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Other issues with parallelism: profiling

oMulticore
� Tools exist, a GUI helps a lot

•
 

gprof, valgrind, …

oClusters
� MPI integration usually good
� Usability iffy with hundreds to thousands of tasks

oManycore
� NVIDIA just provided a profiler for its hardware

•
 

Usability? To be experimented in depth

oGeneral issue
� How to reproduce unpredictable sequences/events
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Recommendations

oEvery application should be parallel as of now
oUnless special needs, start with MPI

� Less risks in the long run on large configurations

oTry to think in terms of millions of tasks
� Good for MPI as well as GPU usage

oGet ready for new hardware
� Multicore and GPU

•
 

HMPP is our favorite solution

oTake the time to work at the algorithm level
oDon’t forget Amdahl’s law ☺
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Questions?
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