
1CEA, DAM, DIF, F-91297, Arpajon, France

Parallel Application Development
Issues

G. Colin de Verdière
CEA, DAM, DIF, F-91297, Arpajon, France

guillaume.colin-de-verdiere@cea.fr

2CEA, DAM, DIF, F-91297, Arpajon, France

Overview

oPresentation of CEA
oWhy CEA is doing Parallel Computing
oThe various options
oRecommendations

3CEA, DAM, DIF, F-91297, Arpajon, France

Defense

Energy

Technologies for information and health

Atom from research to industry

The French Atomic Energy
Commission

4CEA, DAM, DIF, F-91297, Arpajon, France

TERA/CCRT : Applications and Evolution

1996
2001

2005

2003

Astrophysics

Biology

Nuclear Energy

Deterrence Security

Climate

Aeronautics

TERA-10
60 Tflops

TERA-1
5 Tflops

CCRT
2 Tflops

2007

CCRT-B
52Tflops

CRAY T90
43 Gflops

2010 TERA-100 : ~1Pflops
2009 CCRT-B : +103+192 Tflops

5CEA, DAM, DIF, F-91297, Arpajon, France

The new CCRT cluster

500TB on

DDN 9550

4x CISCO 6509

8 x 10Gb Ethe6rnet links

4x CISCO 6509

8 x 10Gb Ethe6rnet links

MNGT

MDS

MNGT

MDS

IOIO IO IO IOIOIO IO IO IO
IOIO IO IO IOIOIO IO IO IO

IOIO IO IO IOIOIO IO IO IO
IOIO IO IO IOIOIO IO IO IO

HA Admin Unit HA Admin Unit

CN CN CN CN CNCN CN CN CN CN

Compute Units

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

GPU

CN

GPU

CN

GPU Processing Unit

GPU

CN

GPU

CN

GPU

CN

GPU

CN

GPU

CN

GPU

CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN

CN CN CN CN CNCN CN CN CN CN CN CN CN CN CNCN CN CN CN CNCN CN CN CN CNCN CN CN CN CN CN CN CN CN CNCN CN CN CN CN
Sous-système de
calcul

Interconnect Infiniband DDR

Sous-système I/O et
d’administration (haute
disponibilité)

Sous-système Lustre

(20 Go/s en lecture/écriture)

B
ac

kb
on

e
1068 nodes

2 Intel
Nehalem-EP

8 cores, 24GB

103TFlops

48 NVIDIA
Tesla
192TFlops SP
(attached to
96 nodes)

6CEA, DAM, DIF, F-91297, Arpajon, France

Future machines

o

We have to design the next generation of production machines
� For Research and Technology (CCRT)
� For Defense programs (TERA)

If If petaflopspetaflops

machines will be available soon machines will be available soon
(2010),(2010),

Exascale Computing is the next focusExascale Computing is the next focus

o

We are limited by power resources
� Is 100+ MW reasonable ?

o

There’s no foreseen breakthrough in processor technology
� Our goal is to provide General Purpose machines

o

How to program those machines?

7CEA, DAM, DIF, F-91297, Arpajon, France

CEA Context: codes

oTypes of codes
� Research for physics

•

Special purpose, advanced methods

� R&D for production
•

Highly coupled physics models

•

Finite elements
•

Structured and un structured meshes, AMR, PIC, …

•

Has to be validated to guarantee our designs

o50+% F90, remainder is C/C++

oRuns are large
� 106 – 109 cells
� Produce > 20TB / day

8CEA, DAM, DIF, F-91297, Arpajon, France

Example: Molecular Dynamics ©

CEA/DAM

o

7 millions molecules, 300000 time steps (75ns)
o

1000 processors, 100h, Code STAMP

o

Credit: Laurent Soulard

o

Explosion front in a explosive
o

Grand Challenge on TERA 10

9CEA, DAM, DIF, F-91297, Arpajon, France

Example: Life science ©

CEA/DSV

o

A few 1011

positons

to simulate
o

Code OpenGATE

o

2.5h, 7000 processors
o

Credit: S. Jan

o

TEP simulation
o

Grand Challenge on TERA 10

o

Visualization: 8 cores, 4h

10CEA, DAM, DIF, F-91297, Arpajon, France

Example: Risk prevention ©

CEA/DAM

o

11 km x 11 km x 2 km, 500 processors, 40h
o

Code MKa3D

o

Credit: C. Mariotti

o

5.5 magnitude seism simulation
o

Visualization: 16 CPU, 500h

11CEA, DAM, DIF, F-91297, Arpajon, France

Example: astrophysics

©

CEA/IRFU

o

70 billion particles, 140 billion cells
o

6144 processors, 18TB RAM, 2 months,

o

Code RAMSES
o

Credit: Romain

Teyssier

et al.

o

Formation of structures in the
universe.
o

Grand Challenge on CCRT

12CEA, DAM, DIF, F-91297, Arpajon, France

Parallelism is required

o

Every new application MUST be parallel
� Problem setup, simulation, post-processing

o

What are the options?
� Multicore

•

OpenMP
•

pthreads
� Cluster

•

MPI
� GPU (manycore)

o

What level of parallelism?
� Depends on the granularity possible

•

Embarrassingly parallel problems
•

Domain decomposition
–

Ghost cells
•

Loop level

o

You have to verify parallelism
� Results must be exactly the same in parallel or in sequential

•

Beware of random generators (Monte Carlo)

13CEA, DAM, DIF, F-91297, Arpajon, France

Do not forget Amdahl’s law

n=∞
f=0.00 s=1
f=0.10 s=1.1
f=0.20 s=1.25
f=0.30 s=1.42
f=0.40 s=1.66
f=0.50 s=2
f=0.60 s=2.5
f=0.70 s=3.33
f=0.80 s=5
f=0.90 s=10
f=0.95 s=20
f=0.99 s=100
f=0.999

s=1000
Think

massively

parallel!

14CEA, DAM, DIF, F-91297, Arpajon, France

Hardware Architecture: a processor

oMemory is banked
� Reuse old practices

from CRAY vector
machines

QPI
to CPU
or I/O

4 SMI
memory
channel

Last Level Cache
24MB

C
or

e-
1

Core/System Interface

Router Mem
Cntrl

Mem
Cntrl

C
or

e-
2

C
or

e-
3

C
or

e-
4

C
or

e-
5

C
or

e-
6

C
or

e-
7

C
or

e-
8

Nehalem-EX

15CEA, DAM, DIF, F-91297, Arpajon, France

Hardware Architecture: a node with 4 sockets

oAll RAM positions are
� Available to each

processor
� not equal in access time

•

Lock process to CPU
•

Lock allocated memory
to a CPU

IOHIOH

Neh.-EXNeh.-EX

Neh.-EXNeh.-EX

QPI
RAMRAM

RAMRAM

RAMRAM

RAMRAM

16CEA, DAM, DIF, F-91297, Arpajon, France

Multicore (N < 32)

o

Multithread and OpenMP
� two different ways to exploit multicore on the node

o

Multithread
� Well suited for graphic user interfaces
� Many implementations

•

Pthreads is the most widely used
•

Intel TBB –

for C++ codes
� Hard to program

o

OpenMP
� Easy to learn
� Well adapted to loop level parallelism
� #pragma (ftn) or !$ (c) => leaves the code unchanged

o

MPI
� Works also;

o

Impact on libraries
•

Should be threads safe + re-entrant

17CEA, DAM, DIF, F-91297, Arpajon, France

http://www.sandia.gov/news/resources/releases/2009/multicore.html

18CEA, DAM, DIF, F-91297, Arpajon, France

Hardware Architecture: clustering nodes

network

Fat tree

4D
hypercube

19CEA, DAM, DIF, F-91297, Arpajon, France

Cluster

oMPI (Message Passing Interface): the most widely
used library on clusters

� Many implementations optimized for the hardware
� Easy to program
� Scalable (should still work for exascale computers)
� Can be adapted to the network topology

oRequires a careful study of communication patterns
� The memory structure of the code must be well understood
� Communications can take most of the time

oMaster / slave structures don’t scale
oImpact on libraries

� None
� If the library uses MPI: should have its own communicator

20CEA, DAM, DIF, F-91297, Arpajon, France

OpenMP + MPI or OpenMP / MPI

o

OpenMP and MPI can coexist peacefully
� May require some tuning : cpuset / memset
� Put MPI in a single OpenMP thread

o

What to choose ?
� If MPI on a node is efficient then MPI only
� It all depends on the largest problem size which will be computed
� Study the memory layout of the application

o

MPI
� Good for problems which can be divided by blocks
� Very intrusive work, no automatic process
� Excellent for embarrassingly parallel jobs

o

OpenMP
� If needs a lot of memory but hard to parallelize then OpenMP on fat

nodes
� Loop oriented

•

Scalable up to the number of nodes (at most if it goes well)
� Minimal work and code almost unchanged

•

If the original code was properly developed

21CEA, DAM, DIF, F-91297, Arpajon, France

Parallelism: an active field of research

oAlgorithms
oProcessor architecture

� Intel Larrabee, AMD Fusion

oLanguages: Partitioned Global Adress

Space
� UPC, Co-array Fortran, Fortress, Chapel, X10
� Interesting notions, still under development

•

Far from being productions tools
•

May need some extensive rewrite

–

What should be done with million of lines of legacy
codes ?

22CEA, DAM, DIF, F-91297, Arpajon, France

In our production

� MPI mostly
•

Took time to do the migration

� OpenMP not performing as well as expected
•

Position should be revised with Intel’s Nehalem

� Very few multithreaded codes
•

Active field of investigation though

23CEA, DAM, DIF, F-91297, Arpajon, France

Manycore (N>32)

o

As of 2009, we think that the future architectures will
be accelerated

� Good ratio power / performance
� Good ratio density / performance

oGPU Computing is our current compromise/answer
� In terms of performances and power
� We wait for the market to get clearer (Larrabee ?)

oConstraints of this type of hardware as of today
� No ECC
� Debugging tools
� A choice of non standard languages

24CEA, DAM, DIF, F-91297, Arpajon, France

Available configurations at CEA

o

Various test machines
� As close to the user’s network as possible
� Each test machine

•

2 Bull servers –

2 Haperton, 8GB
•

2 NVIDIA Tesla S1070NVIDIA Tesla S1070
•

IB DDR

o

CCRT Graphic cluster
� 40 Quadro FX 5800 (8 cores Haperton, 64GB/128GB)

•

T10 based : will be used for GPGPU too.

o

A new CCRT machine
� Two partitions in 1068 nodes

•

Standard production : 972 nodes for 103TFlops
•

Hybrid partition : 96 servers + 48 NVIDIA Tesla48 NVIDIA Tesla for GPU Computing
192 192 TFlopsTFlops

� Servers = BULL Novascale R42x
•

Intel NehalemNehalem--EPEP, 8GB, IB DDR

T10 credit NVIDIA

Tesla S1070 credit NVIDIA

25CEA, DAM, DIF, F-91297, Arpajon, France

Hardware Architecture: node integration of a GPU

IOHIOH

Neh.-EXNeh.-EX

Neh.-EXNeh.-EX

PCI-Ex 16X gen2

26CEA, DAM, DIF, F-91297, Arpajon, France

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

o

240 thread processors
o

Full scalar processor with
integer and floating point
units

o

IEEE 754 floating point
� Single and Double

Thread Processor
(TP)

FP Integer

Multi-banked
Register File

SpcOps
ALUs

Thread Processor Array
(TPA)

30 TPAs = 240 Processors
Double Precision

Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Double Precision
Special Function Unit (SFU)

TP Array Shared Memory

Tesla T10: The Processor Inside
© NVIDIA

27CEA, DAM, DIF, F-91297, Arpajon, France

Programming languages for GPUs

(1/2)

oCuda
� For prototyping or “Kleenex” codes
� For highly tuned libraries (if needed)
� Status of FORTRAN ?

oOpenCL
� The great unknown – for the portability
� Should be tested on AMD/ATI cards at some points too
� NO FORTRAN

oRapidmind
� Has to be experimented
� NO FORTRAN
� Seen as very intrusive

28CEA, DAM, DIF, F-91297, Arpajon, France

Programming languages for GPUs

(2/2)

oHMPP
� Our KEY solution for LEGACY codes

•

Ease of use for the FORTRAN community
•

Capitalize on our MILLIONS of line of code

� Main advantages for CEA
•

FORTRAN, C

–

Java, C++ support soon
•

Multiple targets (NVIDIA, ATI, SSE, …)

•

Keeps the codes’

portability
•

Low learning curve

oFirst actions : Create a user base
� Important to ease the change of paradigm

•

Parallelism is NOT a widespread knowledge
–

Massive parallelism is for some experts only

•

Spread the knowledge from within the teams

29CEA, DAM, DIF, F-91297, Arpajon, France

GPU: First results

oLibraries call (0D) can yield significant results
� EOS on GPU => 3 fold speed up for the whole run

oCode architecture might not be suitable for GPU usage as isas is
� First make sure that the code is REALLY optimized
� Then make sure that the parallelization is well done

•

Reuse some of the vector programming habits
•

Reuse the study of the memory

–

Memory is far far

away !
� Then locate what can remain on the GPU as long as possible
� Then rewrite some portions of the code

•

outvec[i] = outvec[i] + matvals[j] * invec[indx[jindx[j]]]
– Indirect addressing + reduction

30CEA, DAM, DIF, F-91297, Arpajon, France

Everything together ?

o

Adding Cuda

to OpenMP + MPI is possible
� One MPI task per node
� One OpenMP thread per core
� One thread specialized for Cuda

o

HMPP allows for a mix of GPU Computing along
with MPI

� Hybrid programming is here
o

Big increase in code complexity
� importance of code architecture

� KISS

o

Keep the code readable and easy to maintain
o

Optimize the algorithm is more efficient than

modify the existing unoptimized

code
� Teams of experts : computer scientist + physicist

+ mathematician

31CEA, DAM, DIF, F-91297, Arpajon, France

Don’t forget algorithms ;-)

From SIAM Review, 2001

"Is There A
Moore’s Law For
Algorithms?"
David E. Womble
Sandia National
Laboratories
Presented at
Salishan
April 19, 2004

32CEA, DAM, DIF, F-91297, Arpajon, France

Other parallelism having an impact on applications

oI/O
� MPI-I/O versus home made
� Lustre

•

File system level
–

Hopefully transparent for the user

oVisualization
� Tools must handle parallel outputs of codes
� Recent tools use parallelism

•

MPI and multithread
� Can use multiple displays or graphic cards

•

For performances
•

For higher resolution

33CEA, DAM, DIF, F-91297, Arpajon, France

Other issues with parallelism: debugging

o

Multicore
� Tools exist, a GUI helps a lot

•

Gdb, DDT, Totalview, …

o

Clusters
� MPI integration usually good

•

DDT, Totalview
� Usability iffy with hundreds to thousands of tasks

o

Manycore
� NVIDIA just provided gdb for its hardware
� Allinea and Totalview are working on providing at least basic

features.

o

General issue
� How to reproduce unpredictable sequences/events

34CEA, DAM, DIF, F-91297, Arpajon, France

Other issues with parallelism: profiling

oMulticore
� Tools exist, a GUI helps a lot

•

gprof, valgrind, …

oClusters
� MPI integration usually good
� Usability iffy with hundreds to thousands of tasks

oManycore
� NVIDIA just provided a profiler for its hardware

•

Usability? To be experimented in depth

oGeneral issue
� How to reproduce unpredictable sequences/events

35CEA, DAM, DIF, F-91297, Arpajon, France

Recommendations

oEvery application should be parallel as of now
oUnless special needs, start with MPI

� Less risks in the long run on large configurations

oTry to think in terms of millions of tasks
� Good for MPI as well as GPU usage

oGet ready for new hardware
� Multicore and GPU

•

HMPP is our favorite solution

oTake the time to work at the algorithm level
oDon’t forget Amdahl’s law ☺

36CEA, DAM, DIF, F-91297, Arpajon, France

Questions?

	Parallel Application Development Issues
	Overview
	The French Atomic Energy Commission
	TERA/CCRT : Applications and Evolution
	The new CCRT cluster
	Future machines
	CEA Context: codes
	Example: Molecular Dynamics 		© CEA/DAM
	Example: Life science 			© CEA/DSV
	Example: Risk prevention 			© CEA/DAM
	Example: astrophysics			© CEA/IRFU
	Parallelism is required
	Do not forget Amdahl’s law
	Hardware Architecture: a processor
	Hardware Architecture: a node with 4 sockets
	Multicore (N < 32)
	http://www.sandia.gov/news/resources/releases/2009/multicore.html
	Hardware Architecture: clustering nodes
	Cluster
	OpenMP + MPI or OpenMP / MPI
	Parallelism: an active field of research
	In our production
	Manycore (N>32)
	Available configurations at CEA
	Hardware Architecture: node integration of a GPU
	Diapositive numéro 26
	Programming languages for GPUs (1/2)
	Programming languages for GPUs (2/2)
	GPU: First results
	Everything together ?
	Don’t forget algorithms ;-)
	Other parallelism having an impact on applications
	Other issues with parallelism: debugging
	Other issues with parallelism: profiling
	Recommendations
	Questions?

